Friday, September 1, 2017

Math Team - 2017 Schedule

Math team will start wth practice on Monday Sept 25, 2017.
You will need to return a signed permission slip (now available in office ) in order to take the bus to a meet.

Friendly Hills will meet as usual before school on Mondays 7:30 to 8:30 in room 121.
Heritage will meet as usual after school on Mondays from 3:20 until 4:30 in room 160.

Meets are on Mondays after school. The bus returns about 5:30.

Schedule
Sept 25 Practice
Oct 2 Practice
Oct 9 Practice
Oct 16 Meet1 at St Paul Academy. Bus returns HER 5:25, FH 5:40
Oct 23 Practice
Oct 30 Meet2 at St Paul Academy. Bus returns HER 5:25, FH 5:40
Nov 6 Practice
Nov 13 Practice
Nov 20 Meet3 at Heritage. Bus returns FH 5:20 (HER 5:00)
Nov 27 Practice
Dec 4 Practice
Dec 11 Meet4 at St Thomas Acad. Bus returns FH 5:10, HER 5:25
Dec 18 Practice
Jan 8 Meet5 at Friendly Hills. Bus returns HER 5:25 (FH 5:05)

Friday, January 20, 2017

Math Team Party

Heritage - party on Friday Jan 20 from 3:30 - 4:30 or 5:00 in the Room 121
Ice cream sundaes, awards, puzzles and games.

Friendly Hills - party on Monday Jan 23 from 3:30 - 4:30 or 5:00 in the Cafetorium
Ice cream sundaes, awards, puzzles and games.

Monday, January 9, 2017

Year End Results

Team Results
-->
Team 1 2 3 4 5 Total
SPA Gold 182 122 122 126 118 670
FHMS Gold 152 76 71 68 78 445
FHMS Red 111 56 58 56 49 330
SPA-Blue 110 100 44 32 38 324
SSP Maroon 93 48 42 36 55 274
FHMS White 87 24 22 32 40 205
Heritage Gold 114 30 21 11 20 196
St Thomas Acad 46 50 28 24 0 148
SSP White 51 10 6 0 10 77

Individual Results

-->
Student School 1 2 3 4 5 Total
Hlavka, Jack SPA 28 28 28 28 28 140
Bhargava, Divya SPA 15 20 14 22 14 85
Goodman, Michael SPA 25 16 16 16 6 79
Burris-Brown, Spen SPA 14 16 12 12 18 72
Wagner, Nolan SPA 28 8 14 8 12 70
Halverson, Oscar Friendly Hills 20 10 6 20 12 68
Troth, Justin SPA 21 18 9 4 6 58
Hoffman, Thomas Friendly Hills 24 6 2 12 12 56
Overgaard, Connor SPA 18 16 7 0 14 55
Schomer, Sophia Friendly Hills 18 12 12 0 10 52
Martin Risch, Cyrus Friendly Hills 22 10 5 6 8 51
Thilmany, Tristan St Thomas Ac 19 14 13 2 0 48
Zelazo, Sam SPA 18 10 2 10 N/A 40
Warwick, Stella Friendly Hills 18 2 6 6 8 40
Kessler, Nina Friendly Hills 14 8 6 2 10 40
Gannon, Will Friendly Hills 11 6 5 6 10 38
Everson, Esther So St Paul 15 4 8 2 8 37
Dunn, Miles Friendly Hills 22 6 5 2 2 37
Frett, Kallie Friendly Hills N/A 10 8 8 10 36
Cooley, Linnea SPA 14 4 6 0 8 32
Hammond, Louisa So St Paul 12 0 4 6 10 32
Wendt, Nick Friendly Hills N/A 10 6 10 6 32
Lewis, Kathryn Heritage 23 4 4 N/A N/A 31
Hendel, Quinn Heritage 14 2 0 1 14 31
Sikkink, Ben Friendly Hills 24 6 N/A N/A N/A 30
Meyers, Katherine Friendly Hills N/A 8 14 2 6 30
Bawa, Tenzin SPA 20 2 2 0 4 28
Farrell, Teddy St Thomas Ac 14 6 8 N/A 0 28
Hoang, Duy Friendly Hills 10 4 2 4 8 28
Essen, Erik Friendly Hills 10 8 2 4 4 28
Dzurilla, Victoria Friendly Hills 12 2 4 4 6 28
Zelle, Milo SPA 22 N/A 5 N/A N/A 27
Laitinen, Bodhi So St Paul 22 4 0 0 0 26
Sisakda, Amario Friendly Hills 10 2 2 4 8 26
Reisig, Luke Friendly Hills 11 2 3 2 8 26
Noggle, Meg Heritage 21 N/A 4 N/A N/A 25
Gurung, Shakti Friendly Hills 9 4 2 0 8 23
Schuster, Faith So St Paul 12 2 0 0 8 22
Lillegard, Annika SPA 16 2 3 N/A N/A 21
Sanford, Evan So St Paul 11 8 2 0 0 21
Noggle, Lauren Heritage 9 8 2 0 2 21
Meyer, Malia So St Paul 0 6 6 0 8 20
Walker, Isaiah Friendly Hills 7 6 1 2 4 20
Cheesebrough, Cha Friendly Hills 11 N/A 2 0 6 19
Awadallah, Remola So St Paul N/A 8 2 N/A 8 18
Kalugdan, Naysa SPA 13 4 N/A N/A N/A 17
Mandic, Mina SPA 16 N/A N/A N/A N/A 16
Booth, Marcel Friendly Hills 10 2 0 0 4 16
Painter, William SPA 14 N/A N/A N/A N/A 14
Moran, William SPA N/A 6 6 2 N/A 14
Mohs, Alex St Thomas Ac 14 N/A N/A N/A 0 14
Lipschultz, Ruby Heritage 11 0 1 0 2 14
Schomer, Lucia Friendly Hills 8 0 0 0 6 14
Newmark, Claire Friendly Hills 8 2 0 0 4 14
McDonald, James St Thomas Ac 0 10 3 0 0 13
Heil, Gianna Heritage 7 4 2 N/A N/A 13
Kronschnabel, T J Friendly Hills 9 2 0 0 2 13
Cheesebrough, Mia Friendly Hills 9 N/A 2 N/A 2 13
Rodriguez, Helen So St Paul 6 2 0 0 4 12
Yebyo, Salem So St Paul 7 0 2 0 2 11
Moberg, Pierce Friendly Hills 11 N/A N/A N/A N/A 11
Lombardi, Giovanni Heritage 10 N/A 0 0 0 10
Frisch, Nathan Heritage 9 N/A N/A N/A N/A 9
Clark, Zaniyah So St Paul 2 4 0 0 2 8
Kanavati, Sophia Friendly Hills N/A 2 0 0 6 8
Balza, Mary So St Paul 3 0 0 0 4 7
Wojnar, Madeline So St Paul 6 0 0 0 0 6
Bartlett, Nick St Thomas Ac 0 0 0 6 0 6
Potter, Sydney So St Paul 0 4 0 0 0 4
Belmares, Serenity So St Paul 4 0 0 0 0 4
Gallant, Gray Heritage 0 N/A 0 2 2 4
Axinia, Maria Friendly Hills 2 2 N/A N/A N/A 4
Kasthoori, Achyuth Friendly Hills 0 0 0 0 2 2

HERITAGE SCORES
7 Kathryn Lewis 0 31
5 Quinn Hendel 6 8 14 31
7 Meg Noggle 0 25
5 Lauren Noggle 0 2 2 21
6 Ruby Lipschultz 0 2 2 14
7 Gianna Heil 0 13
5 Giovanni Lombardi 0 10
5 Gray Gallant 0 2 2 4
FRIENDLY HILL SCORES
-->
Name M5A M5B M5T Yr Tot
Oscar Halverson 6 6 12 68
Thomas Hoffman 4 8 12 56
Sophia Schomer 4 6 10 52
Cyrus Martin Risch 0 8 8 51
Stella Warwick 2 6 8 40
Nina Kessler 4 6 10 40
Will Gannon 2 8 10 38
Miles Dunn 0 2 2 37
Kallie Frett 2 8 10 36
Nick Wendt 0 6 6 32
Ben Sikkink 0 30
Katherine Meyers 0 6 6 30
Victoria Dzurilla 4 2 6 28
Erik Essen 2 2 4 28
Duy Hoang 2 6 8 28
Amario Sisakda 2 6 8 26
Luke Reisig 2 6 8 26
Shakti Gurung 0 8 8 23
Isaiah Walker 2 2 4 20
Charles Cheesebrough 0 6 6 19
Marcell Booth 2 2 4 16
Claire Newmark 0 4 4 14
Lucia Schomer 0 6 6 14
Mia Cheesebrough 0 2 2 13
T J Kronschnabel 0 2 2 13
Pierce Moberg 0 11
Sophia Kanavati 0 6 6 8
Achyuth Sujith Kasthoori 0 2 2 4
Maria Axinia 0 4
Honey Adewuyi 0 0
Mikayla Stebbing 0 0
Daniella Sanchez 0 0
Brittany Sanchez 0 0

Monday, December 19, 2016

Problems solved, Scores and Team Assignments

Don't forget to see the previous post for on-line lessons on this stuff.

SOLVING THE PRACTICE TEST PROBLEMS

1. What is the intersection of y = 3x + 4 and y = x - 2
Since y = x - 2, let's substitute (x - 2) for y in the first equation:
 x - 2 = 3x + 4  (Now let's add 2 to both sides)
x = 3x + 6 (Let's get all the x's on the left by adding -3x to both sides)
-2x = 6 (To get x all alone on the left, divide both sides by -2)
x = -3 (So we know x. To find y, we can use either equation. Let's use the simplest one y = x - 2)
y = x - 2 (But we know x = -3, so substitute -3 for x)
y = -3 - 2 or y = -5. So the lines intersect at (-3, -5)

Let's check! (-3, -5) should make both equations true
(-5) = 3(-3)+ 4
-5 = -9 + 4 True!
(-5) = (-3) -2 Yes, that's true too!

2. Find the two points where y = |x-4| and y = ⅔ x - 2 intersect.
This is a little tricky because we have to remember that x-4 could =y or x-4 could = -y
y = x-4     -y = x-4
                 y = -x + 4 (I multiplied both sides by -1 so I'd have just y on the left)
Next I take that second equation and substitute each of these expressions for y.
x-4 = ⅔ x - 2 and -x + 4 = ⅔ x - 2 (Let's multiply both sides of both equations by 3)
3x - 12 = 2x - 6 and -3x + 12 = 2x - 6 (Next subtract 2x from both sides)
x - 12 = -6 and -5x + 12 = -6 (and now we will solve for x)
x = 6         and -5x = -18
                          x = -18/-5
                          x = 18/5 = 3
So we have the two x values (6, y) and (3⅗, y). Let's find y by using our two equations.
y = x - 4  and  -y = x - 4
y = 6-4   and    y = -x + 4
y = 2       and   y = 4 - ( 3⅗ ) = 
(6,2)      and  (3⅗, ⅖)
Check these answers by plugging them into the original 2 equations and you'll be convinced!

3. Simplify (3x2+4x-7)-2(x2-2x+3)
Where most of you went wrong was losing that minus sign in the middle.
If you remember that subtracting is the same as adding a negative, you won't lose the sign.
 (3x2+4x-7) + -2 (x2-2x+3)  Now let's distribute that negative two.
(3x2+4x-7) + (-2x+ 4x - 6)  Did you remember that  -2 x  -2  = 4 ?
Combine like terms:  x+ 8x + 1  Done!

4. Simplify 
x2 + 2x - 24 
        x - 4              
Looks hard, but here's an easy way to think about this one. 2 x 3 can be represented by two rows of three squares. We want to know what two binomials (a fancy word for a mathematical expression having two terms - like x+1) have a product of  x2 + 2x - 24. (x+a)(x+b) Draw box and let's fill in the four products.
       x    +     a  
x |  x2  |  ax    |
+ |-----|-------|
b |_bx_|_ab__|
Now it can be seen that the product of axb=-24 and the sum of a+b=2. 24 = 2x12 or 3x8 or 4x6.
Aha -4 and 6 have a product of -24 and a sum of 2. If you had trouble coming up with this, look at the denominator for a hint - one of the numbers is -4.
x2 + 2x - 24    =   (x-4)(x+6)   =  x + 6
        x - 4                   x-4

5.What is the area of a parallelogram formed by y = 1, y = x+3, y = 5, and y = x-3.
We could graph this, but we don't even have to. A = h x w. The bottom and top of our parallelogram are y = 1 and y = 5. The difference of 4 is the height. The other two equations have a difference of 6. w x h = 6 x 4 = 24  sq units

Test two:
1. Line segment MH is rotated 180 degrees about the origin to create segment M'H'. 
M = (-1,4) H = (-5,-2) Where is M'? Where is H'? 
This means M' is going to 180 degrees, or exactly opposite the origin. M'=(1,-4) and H'=(5,2)

2. A cube has a volume of 729 cubic inches. What is the length in inches of each edge?
V = l x w x h, but on a cube l=w=h. So x= 729. 5x5x5-125 so that's too low. 10x10x10 = 1000 so thats a little high. Try 9x9x9- 81x9=729 aha! Answer: 9 inches

3. A rectangle has a width of 5 units and an area of 75. What's the length of the diagonal?
Rectangle: A = L x W Hence 75 = L x 5. L must be 15. With a little help from Pythagorus, we know that a+ b= c2  
So 5+ 15= c2
 25 +225 = c2
250 = c2
c=√250
=√5x5x10
=5√10

4. Sanjay's basketball has Volume = 256/3 π. How big must the rim be? Express as an inequality in terms of C (circumference) and π.
Volume of a sphere is 4/3πrso 256/3 π = 4/3πrHence 256 = 4ror 64 = rThus r = 4.
C = 2πr so C =2π4 = 8π. So that's if the ball exactly fits the rim, but the rim needs to be slightly bigger to allow the ball to fall through. Hence C > 8π inches.

5. Sanjay's backboard is 6ft by 3.5 ft. He will use tape to mark out the rectangular "sweet spot." It's height is ¾ its length. The ratio of the area of the "sweet spot"to the area of the backboard is 1:7. How many feet of tape will Sanjay need?
Let's calculate the size of the sweet spot. The back board is 6x3.5 = 21 sq ft. The sweet spot is one seventh or hence 3 sq ft. So height x width=3 but also h=¾w, so substituting we get 
¾w x w = 3 ( Now multiply both sides by 4 to get...)
3w x w =12 ( Now divide both sides by 3 to get...)
w x w = 4 So w = 2 Width of the "sweet spot" is 2ft. Its height is ¾ that or ¾x2 =1.5ft
So he'll need 2 + 1.5 + 2 +1.5 to go all the way around the "sweet spot". That 7 ft.

Friendly Hills Scores and Team Assignments
-->
Oscar Halverson 10 42.0
Thomas Hoffman 6 6 34.7
Kallie Frett 7 6 32.3
Nick Wendt 2 4 26.0
Cyrus Martin Risch 0 6 24.3
Nina Kessler 5 2 18.3
Sophia Schomer 2 2 18.0
Victoria Dzurilla 2 4 16.0
Miles Dunn 0 2 15.0
Katherine Meyers 0 0 14.7
Stella Warwick 0 0 14.7
Will Gannon 0 0 13.3
Erik Essen 0 2 12.7
Ben Sikkink 12.3
Amario Sisakda 0 2 10.7
Duy Hoang 0 0 9.3
Isaiah Walker 0 2 8.7
Luke Reisig 0 0 7.3
Marcell Booth 0 2 6.0
Shakti Gurung 5.0
Charles Cheesebrough 0 0 4.3
Sophia Kanavati 0 0 4.0
Mia Cheesebrough 0 0 3.7
T J Kronschnabel 3.7
Claire Newmark 0 0 3.3
Lucia Schomer 0 0 2.7
Daniella Sanchez 0 0 1.3
Brittany Sanchez 0 0 1.3
Achyuth Sujith Kasthoori 0 0 0.7

Heritage  Scores and Team Assignments

Kathryn Lewis 8 26.3
Quinn Hendel 0 6.3
Lauren Noggle 0 6.3
Gianna Heil 4.3
Ruby Lipschultz 4.0
Gray Gallant 0 2.0